Reflection of Waves in a Rotating Transversely Isotropic Thermoelastic Half-space Under Initial Stress

نویسنده

  • R. R. Gupta
چکیده

The present paper concerns with the effect of initial stress on the propagation of plane waves in a rotating transversely isotropic medium in the context of thermoelasticity theory of GN theory of type-II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasi-longitudinal wave. The slowest of them is a thermal wave. The remaining is called quasi-transverse wave. The prefix ‘quasi’ refers to their polarizations being nearly, but not exactly, parallel or perpendicular to the direction of propagation. The polarizations of these three waves are not mutually orthogonal. After imposing the appropriate boundary conditions, the amplitudes of reflection coefficients have been obtained. Numerically, simulated results have been plotted graphically with respect to frequency to evince the effect of initial stress and anisotropy. © 2014 IAU, Arak Branch.All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection of Waves in a Rotating Transversely Isotropic Thermoelastic Half-space Under Initial Stress

The present paper concerns with the effect of initial stress on the propagation of plane waves in a rotating transversely isotropic medium in the context of thermoelasticity theory of GN theory of type-II and III. After solving the governing equations, three waves propagating in the medium are obtained. The fastest among them is a quasi-longitudinal wave. The slowest of them is a thermal wave. ...

متن کامل

Wave Propagation in Fibre-Reinforced Transversely Isotropic Thermoelastic Media with Initial Stress at the Boundary Surface

The reflection and transmission of thermoelastic plane waves at an imperfect boundary of two dissimilar fibre-reinforced transversely isotropic thermoelastic solid half-spaces under hydrostatic initial stress has been investigated. The appropriate boundary conditions are applied at the interface to obtain the reflection and transmission coefficients of various reflected and transmitted waves wi...

متن کامل

Influences of Heterogeneities and Initial Stresses on the Propagation of Love-Type Waves in a Transversely Isotropic Layer Over an Inhomogeneous Half-Space

In the present paper, we are contemplating the influences of heterogeneities and pre-stresses on the propagation of Love-type waves in an initially stressed heterogeneous transversely isotropic layer of finite thickness lying over an inhomogeneous half space. The material constants and pre-stress have been taken as space dependent and arbitrary functions of depth in the respective media. To sim...

متن کامل

Journal of Solid Mechanics Vol

The reflection and transmission of thermoelastic plane waves at an imperfect boundary of two dissimilar fibre-reinforced transversely isotropic thermoelastic solid half-spaces under hydrostatic initial stress has been investigated. The appropriate boundary conditions are applied at the interface to obtain the reflection and transmission coefficients of various reflected and transmitted waves wi...

متن کامل

Thermoelastic Rayleigh Wave in a Rotating and Transversely Isotropic Solid Half-space with Magnetic Field and Initial Stresses

The governing equations of an initially stressed, rotating and transversely isotropic thermoelastic solid permeated with magnetic field are solved for surface wave solutions. The appropriate particular solutions in the half-space satisfy the required boundary conditions at a thermally insulated stress free surface. A velocity equation is obtained for wave speed of thermo-elastic Rayleigh wave. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014